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RANDOM-NUMBER GUESSING AND THE 
FIRST DIGIT PHENOMENON1 

THEODORE P. HILL' 

Georgia Irrrlirute o f  Technology 

Summmy.-To what extent do individuals "absorb" the empirical reg- 
ularities of their environment and reflect them in behavior? A widely-accepted 
empirical observation called the First Digit Phenomenon or Benford's Law 
says that in collections of miscellaneous tables of data (such a s  physical con- 
stants, almanacs, newspaper arrides, etc.), the first significant digit is much 
more likely to be a low number than a high number. In this study, an analysis 
of the frequencies of the first and second digits of "random" six-digit numbers 
guessed by people suggests that people's responses share some of the proper- 
ties of Benford's Law: first digit 1 occurs much more frequently than expected; 
first digit 8 or 7 occurs much less frequently; and the second digits are much 
more uniformly distributed than the first. 

It seems to be widely accepted that people CaMOt behave truly randomly, 
even in situations such as game-playing where success may depend on an 
ability to perform in an unpredictable way. If people are asked to generate 
random numbers, their responses differ significantly from truly random se- 
quences; Tune (1964) has a good review of the literature. 

For example, an experiment of T. Varga [see Revesz (1978) or a related 
experiment by Bakan (1960)] is this. Half a dass of students is asked to flip 
a coin 200 times and record the results; the other half is asked to fake a sequence 
of 200 tosses. By later declaring "fake" any sequence which fails to have a run 
of at least length six, Varga found he could distinguish between the true and 
the faked sequences with very high accuracy. Of course, once this rule is known 
the fakers can beat it, and in general it seems possible to be able to learn to 
generate more random sequences (cf. Neuringer, 1986). 

As a second example, a statistical analysis of the winners of the Massa- 
chusetts Numbers Game by Chernoff (1981) yielded a collection of 33 four- 
digit numbers which were sufficiently unlikely to be picked by players as to 
make them potentially favorable bets. In  that game, first the players bet on a 
four-digit number of their own choice, next a single four-digit number is drawn 
by a judge (or generated randomly), and then all players with the winning 
number share the pot equally. In such a situation it is advantageous ro be able 
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to identify numbers which few people choose, since all numbers are equally 
likely to be winners and the expected payoff for an unpopular number is then 
higher than that for a number which many people have chosen. (Of course, 
"unpopular" numbers become popular numbers as soon as they are learned.) 

Perhaps when people think they are generating a random number they 
are often basing it on numbers from their own experience, and if the numbers 
in their experience are not uniformly distributed (or "truly random"), this 
should be reflected in the responses. A widely quoted empirical observation, 
apparently first published by the physicist Benford (1938), is that randomly 
occurring tables of data tend to have entries that begin with low numbers: in 
particular, the first significant digit is 1 almost three times as much as one 
would expect and is 9 less than half as much as one would expect. 

The purpose of this research was to explore the possible connection be- 
tween this First Digit Phenomenon and the responses of people trying to 
generate random numbers. If people are influenced by experience with num- 
bers roughly obeying Benford's observations, one would expect their responses 
to have many more numbers beginning with 1 or 2 than with 8 or 9; this was 
the case, although not nearly as extremely as in Benford's data. 

First Digit Phelzomenon 

Benford observed that tables of logarithms in libraries tend to be pro- 
gressively dirtier near the beginning and wondered why students of science 
and engineering (say) have more occasion to calculate with numbers beginning 
with 1 or 2 than with 8 or 9. He  studied 20 tables of numbers including 
molecular weights of chemicals, surface areas of rivers, street addresses of 
famous people, baseball statistics, arithmetical sequences, and newspaper items 
and found that the leading significant (nonzero) digit in his data was 1 with 
frequency 306, as opposed co the uniform frequency 1/9 one would expect for 
a "truly random" distribution of the first significant digits. 

In general, Benford found empirically that the proportion of entries be- 
ginning with first (nonzero) digit d is well approximated by 

There have subsequently been many theoretical models offered to explain 
[I], including those by Cohen ( 1976), Diaconis ( 1977), Flehinger ( 1966), 
and Raimi ( 1969, 1976) ; Raimi ( 1976) has a good survey of the literature on 
this problem. 

Similarly, Benford found that the frequencies of digits k places from the left 
are also nonuniform, although they do tend to be more uniformly distributed 
as k increases. The proportion of entries with second significant digit d is 
approximately 
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9 9 
loglo I1 ( lOj  + d + 1 )  - log10 II ( lOj  + d) ,  d = 0,1, ..., 9. 

j= 1 j= 1 
[21 

For example, the second significant digit is 1 with probabiliry loglo 
(12 ' 22 ' ' ' 92) - loglo( l l  ' 21 ' ' ' 91) e .114; Table 1 below in- 
cludes the relative frequency of the first and second digits according to the 
laws [I] and [2]. 

Method 

A large number ( 7 4 2 )  of undergraduate calculus students were given slips of 
paper and asked to write down a six-digit random number "out of their heads," i.e., 
no calculators, coin-flipping, etc. The frequencies of the first and second significant 
digits in their responses were calculated and are summarized in the following table, 
along with the theoretical frequencies of the first and second digit laws [ l ]  and [2] 
(which are referred to as Benford frequencies in the table), and the "truly random" 
or uniform distributions. (Two responses of all zeroes were not included in the table.) 

The choice of number of digits requested (six) was made at A. Tversky's sug- 
gestion. Many natural variations of the experiment are possible, among them: re- 
questing a different, or unspecified number of digits; allowing more time, say several 
days, for responses; including rewards of some type, such as a lottery jackpot as in the 
numbers game studied by Chernoff or a reward structure of Neuringer (1986);  using 
subjects from different classes of mathematical sophistication [Chapanis (1953) found 
that more marhematically sophisticated subjects responded with more nearly uniform 
(random) sequences]; and allowing the subjects to call out, use computer keyboard, 
or otherwise register their responses. 

Results 

Analysis of the data in Table 1 was made using the chi-squared and Kol- 
rnogarov-Smirnov goodness-of-fit tests. Other tests such as measure of infor- 
mation content or aucocorrelation are also possible; the reader is referred to 

TABLE 1 
FREQUENCIES OF FIRST AND SECOND SIGNIFICANCE DIGITS 

First Observed Benford ( 1 ) Uniform Second Observed Benford ( 2 )  Uniform 
Digit Digit 
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Neuringer (1986) for references. As one would expect by looking at Table 
1 (left), the null hypothesis that the response frequencies obey Benford's Law 
is rejected at the .05 significance level by both the chi-squared ( 8  df) test and 
by the Kolmogarov-Smirnov test. Table 1 (right) shows better agreement; 
the chi-squared ( 9  df) test permits acceptance of the null hypothesis that the 
true distribution is Benford at the .05 significance level whereas the Kolrnogarov- 
Smirnov test requires rejection; both tests permit acceptance of the null hy- 
pothesis that the true distribution is uniform at the .05 level. 

Discassion 

Although not conforming precisely to the predictions of the First Digit 
Law, the results of the experiment indicate that the distributions of random 
numbers guessed by people share the following properties with the Benford 
distributions: ( i )  the frequency of numbers with first significant digit 1 is 
much higher than expected; ( i i )  the frequency of numbers with first signifi- 
cant digit 8 or 9 is much lower than expected; and (i i i)  the distribution of 
the second digits is much more nearly uniform than the distribution of the 
first digits. 

These conclusions are consistent with Chernoff's (1981) findings that 
generally high numbers are less likely to be chosen in numbers games. Of 
the 33 numbers in his "first system" (numbers with predicted normalized 
payoffs exceeding LO), 16 had first significant digit 8 or 9, and only one has 
first significant digit I or 2. (Recall that Chernoff tried to identify numbers 
which were cmlikely, so a high proportion of large numbers in his list cor- 
responds to a low frequency of occurrence of high numbers.) 

These conclusions are also undoubtedly related to other known common 
response phenomena such as the tendency, in interest surveys, to select the 
first choice early in the list. Accordingly, these results seem quite germane 
for psychometricians involved in the design of tests. 

Several other questions are raised by this experiment. For example, Table 
1 (left) suggests that numbers with leading significant digit 5 are much less 
likely to occur than those with 4 or 6,  at least by calculus students. Is this 
true in general, and if so, why? Conclusion (iii) above suggests that people 
do not generate random numbers digit-by-digit but rather according to some 
other rule. Is this true in general? The data in Table 1 also suggests a ten- 
dency towards bimodality, with local minima at 5 or 6. Does this perhaps 
reflect two separate subpopulations with one choosing numbers early in the 
series and one choosing from the high end? 
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